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ON STOCHASTIC APPROXINATICM

Abstract

This paper deals with a stochastic process for the approximation of the

root of a regression equation. This process was first suggested. by Robbins

and Monro [1].

The main result here is a necessary and sufficient condition on the

iteration coefficients for convergence of the process (convergence with

probability one and convergence in the quadratic mean).
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ON STOCHASTIC APPROXIMATION

1. Introduction and Sunrary

In their classical paper Robbins and Monro [1] treated the following

problem.

Let F(y1x) be a family of distribution functions depending upon a real

parameter x , < x < +00 , and let M(x) ,

Y c1(Y1x)

be the corresponding regression function. It is ass,tmed that M(x) and

F(yix) ore u.nknowl, to hhe experimenter who can, however, take observations

on F(yjx) for any value x . Robbins and Monro gave a method for solving

stochastically the regression equation

(1) M(x) =

where la is a given number. Under certain conditions on M(x) they were

able to construct an iteration procedure [X
n

) such that X
n

converges in

probability to the (unique) root 0 of (1).

This "Robbins-Monro procedure" is defined as follows. Let [an) be a

fixed sequence of positive numbers such tnat

(2) E a - 0) , E a
n

< 0D

n=1 n=1

The iteration procedure i- then defined recl,rsively as the nonstationary

Markov chain (xn) given by

(3) X = X
n

- an(Yn - ) , F (X
1
= a c R ) = 1 ,

3
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where Y
n

is a random variable distributed according to F(ylx = X
n ) or,

in another notation, Y
n

is a realization of the random variable Y(Xn) .

Later several authors (e.g., Blum [2], Dvoretzky [5]; have shown that

even under weaker con2itions than those imposed in [1] on M(x) , the Robbins -

Monro process also converges with probability one and in the quadratic mean.

In this paper wc. deal with the question of whether it is possible to

relax the parameter condition (2). The main result is that the condition

(h) an 0 (n -) 03) , ' a

n=1

CO

in connection ,Tith certain assumptions on M(x) , is necessary and sufficient

for convergence with probability one and in the quadratic mean. Furthermore,

the proof of convergence seems to be more elementary than roofs given by

earlier writers.

2. Lemmas

In this sec'Uon we state an,", prove two Lemma.; which will be needed for

the proof of Theorem 1 and Theorem 2 given in section 3.

LemmaA.Let(a.)be a sequence of real numbers. Then

E ai II (l - a
j

) = 1 - it (l - al) ,

i=1 J=J+, i=1
n > 1

Lemma B. Let (a. )1:), a sequence of positive numbers satisfying the condition

Then

an -4 0 (n -) , E
,

a
n

=

n=1

2
a.)2E - 0 co) .

1=1 j=i-1

1Throughout this paper the factor of the last '-erm of such a sum equals ore.
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Lemma A can easily be verified by induction. To prove Lemma B we note firs

that for any C > 0 there exists an integer No = No(g) such that, for all

n No ,

an < E , 0 < 1 - an < 1

Hence we get the Liequality

n n n
N -1 N -1
0 U n n

EZI-1(1 - a.) c E (1 - .E2II(1-a.)2+SEa..11(1 - a.) .

,2 .

i . 1 J ]
i=1 j=1+1 i =1 '

0
i=1 j =i +l i-N

o
j=i+1

file factor of g is less than one by virtue of Lemma A. Because of the diver-

gence of Ea.
n

there exists for any N > 0 integer N1 = Ni(g, H) such

that, for all n > Ni ,

If we denote

ii (1 - a.) < F.M
-1

N -1 N
o
-1

0
E

2
=

1=1 3=1+1

it follows immediately that

,

E
i

2
(1 - a.)

2
< 2e for all n > N1

i=1 j=i+1

This completes the proof of Lemma B.

3. Stochastic Approximation of the Root of a Regression Equation

Let us assume that the regression function M(x) corresponding to the

family of distribution functions F(y1x) , satisfies the following conditions:
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(5) c :x - 01 < 1M(x) al <cl-
5

c - 01 + c..

'

c
2
>c

1
,> 0 c

3
> 0

1 2
;

(6) M(x) < ix x < 9

11(x) = a for x = 0

M(x) > a x '-` e

ae variance of Y(x) is supposed to be unifomly bounded in x ,

(7) .ar Y(x ) <

Then we state the following theorems.

Theorem 1. If conditions CO through (7) hold, th?n the stochastic process

(X
n

) given by (3) converges to 0 with probability one and in

,2
the quadratic m.?.a.n, X

n
-)0 w.pr. 1 , E(X

n
- 0) -)0 (n

If we replace condition (5) by

(7' ) c - 01 < 111(x) - < c
2
lx - 01 , c > c

1
> 0 ,

and if we add the assumption that in a neighborhood of 0 Var Y(x) does not

vanish,

(8) Var Y(x) > c
5
> 0 for all x c (xl[x - 01 < , > 0) ,

then the parameter condition (4) is even necessary and sufficient for the con-

vergence of (Xn) to 0 .

Theorem 2. If conditions (5'), (6), (7), (8) bold, then (X,) converges to

0 with probability one and in the quadratic mean if and only if

the parameter sequence (an) fulfills condition (4).
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,Proof of Theorem 1. We derive a recursion formula for the sequence E
n

= ECx
n

- 0)
2

From (3) we have

1

(9) En+1
E(Xn+, - 0)

2
= E[Xn - 0 - anCin - 00]2

= E
n

- 2a
n
E[(X

n
- '))E(Y(x) Ulx = Xn)3 + a:2IE(EE(Y(x) a)21x - X

n
])

Because of (5) and (6) it follows that

R[(Xn - e)E(Y(x) - Qix = Xn)] = EL (Xn - 0)(M(Xn) Q)]

EEIX
n

- 0

From (5) and (7) we get

m(xn) - all > clE(XL - 0)2 > 0

E(E[(Y(x) - C1)2x xn)) = E(E[(Y(x) - M(x) + M(x) - ot)2k = xnJ1

ElVar Y(Xn) + (M(Xn) Q)21 < E[c4 + c;(Xn - 0)2 + 2c2c31Xn Gl + c]

2
< c4 + 2c2c3 + + (c2 + 2,22c5)E(X11 - 0)

2
.

Using these inequalities and setting

2 2 2
c + 2e2c5 + e5 = c6 , c2 + 2c2c3 = c7 ,

it follow: at once that

E
n+1

< (1 - 2c lan + c72an
2
)E
n

+ c 6an
2

Because of the convergence of (an) to zero and c
7

> c
1

there exists for

each constant c8 0 < c8 < an
8 8

c
1

integer N2 such that for all n > N2

2
1 - 2c

1
a
n

+ c2
o

a
n

< (1 - c,a
n

7
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This yields the more convenient inequality

F <-
,

(1 - cna )
2
E + c a

2
n N

n+1 o n n 6n ' 2

Mding up this inequality from N2 to n we find

n , n

(10) E
n+1

< E (1 - csai)
2
+ c6 .E ai (1 - c8aj)

2

i2 i=N
2

1-N
2

0=1+1

first term of the right-hand side of 010) converges to zero since EN is

2

finite and

IT (1 - (n r-))

I,N
2

because of the divergence of Eai . Because of Lemma B the same holds for

the second tern,

1
It

,

(1 - c8a.j)2 = (c8)
-2

E (c8ai)
2

o
(1 - cna.)

2
-) 0 (n

i=N
2

j=i+1 i=N
2

j-i+1

This concludes the proof .f convergence in the quadratic mean.

To show that (X
n

) converges also with probability one we use a method

which is similar to that employed by Dvoretzky (5). We derjve the convergence

with probability one from the convergence in the mean.

For any pair r > 0, S > 0 , there exists an integer N5 = (C,E ) such

that, for all n > N3 ,

E
R

= E(X
n

- 0)
2

< ETC

We modify the sequence (Xn) :
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X' - X for all n < N
n n 3

'

n
- a

n
(Y
n

- a) Ix' - el < 5(

(12) x' = if

X' otherwis
n+1

Y
n

denotes now a realization of the random variable Y(x - X') Instead of

Y(x = xn) .

Equations (11) and (12) imply that also

(13) - < C52 for all n > 1
5

If1X.- 01 > S for any j > N
3 '

it follows from .1.2) that IX' - 0; > 6

for all n j , and we obtain, for all n > N3 ,

P ( max 1X4 - 9: > 8) < /'(1X1 01 > 6)
N
3 -
<jn

Together with (15) this implies that {X. ) converges with probability one to

P(sup IX. - BI > S1 < e
pN

3

J

This completes the proof of Theorem 1.

Proof of Theorem 2. Since Theorem 1 implies the sufficiency

of parameter condition 4, it remains only to prove that the parameter condition

(4) is necessary for the convergence of (Xn) to 0 . We assume that the

sequence (E
n

) converges to zero even in the case when we use a parameter

sequence fan) which does not satisfy condition (4). We show that this assumr-

tion yields a contradiction.

9
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The parameter sequence (an) under consideration has to fulfill exactly

one of the following conditions:

(a)
1

i=1

(b) here exists a subsequence (an ) and a constant L > 0 such that

a > L > 0 for all 1 .

n,

From the asserted convergence of En to zero it follows - -ac, we have seen--

that X
n

converges to 0 with probability one. Therefore and because of (8)

there exists an integer N4 such that, with probability o!,e,

min Var Y(X
n
) = c

5
0

n>N4

In the parameter case (a), which implies an C (n co) , we can further

assume that N
4

is so large that

0 < 1 - 2c2an + c
l2 an

2
< 1 for all n > N4

hence it follows from (9) by similar arguments to thaw used before that

, , 2 ,

E > E - 2c a F + a
2
LE(Var Y(X )) + clnJEn+1 n 2nnn n

2 ,
> - 2c ,a + c

1
a

2

n
Jrn + c .a

2
n N .

c n 5 n

Again there exists for each c9 > c, an integer N
5
= N

5
(c

3
) > N

4
such that

E > (1 - c9a11) + c5a211 for all n > N
5

.

hence we get for the parameter case (a)

10
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14,1>RN.T1(1..c9a1)2+c5EZ11(1 c a.)
2
>

1
5 i=N

5
1=N

5
j=i+1 9 j

2
^ f E a. = cc

1 10
i=N

5

f E (1 - c
9
a )2

j-N
5
+1

is greater than zero because of the convergence of Lai . Hence we have

E
n

c
10

> 0 for all n > N
5

, which implies the desired contradiction.

In case (1-) we get the -ntradiction immediately by considering the

sequence of inequalities

En > c.a
2

> c
5

L > 0 for all n. > N
4

.

This completes the proof of Theorem 2.

4. Concluding Remarks

The crucial assumptions which lead to the weakening of the parameter

condition (2) are the two assumptions contained in (5) and (5'), respectively.

One of the assumptions in (5),

(14) IM(x) al < c2lx - ol + c3 ,

cannot be relaxed as it was pointed out, e.g., by A. Dvoretzky (1-51, p. 51).

However, it might be interes'Ang to knaa if the validity of Theorems 1 and 2

is affected by wea.:%eaing the other assumption male in (5) and (5'),

(15) cilx 01 < Im(x) al .

11
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In particular, we may ask if it is possible to replace (15) by the 11.7:al

condition (e.g., Blum [2], p. 38C)

inf 1M(x) - al > 0 for every pair of numbers (51,60

5
1
< Ix el < 52

with 0 < 5
1
< 5

2
< .

In practice, however, condition (14) and (15) will cause no trouble, because

in almost all instances the experimenter knows that the root 0 li s in some

finite interval [C,,C*1

(3) by the bounded

. Therefore he can replace the iteration procedure

stochasti- approximation process

C
*

xn - an (Y
n

- a) < C
*

n+1
= Xn - a

n
- a) if G

*
< X

n
- a n(Y

n
- a) < C*

LC" Cxn - an (Y
n

- 0) *

In this situation (14) and (15) du not seem very restrictive.

12
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